On Schatten-class perturbations of Toeplitz operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schatten Class Toeplitz Operators on the Bergman Space

Namita Das P. G. Department of Mathematics, Utkal University, Vanivihar, Bhubaneswar, Orissa 751004, India Correspondence should be addressed to Namita Das, [email protected] Received 23 July 2009; Revised 7 September 2009; Accepted 14 October 2009 Recommended by Palle Jorgensen We have shown that if the Toeplitz operator Tφ on the Bergman space La D belongs to the Schatten class Sp, 1 ≤...

متن کامل

Schatten class Toeplitz operators on weighted Bergman spaces of the unit ball

For positive Toeplitz operators on Bergman spaces of the unit ball, we determine exactly when membership in the Schatten classes Sp can be characterized in terms of the Berezin transform.

متن کامل

Continuity and Schatten–von Neumann Properties for Pseudo–Differential Operators and Toeplitz operators on Modulation Spaces

Let M (ω) be the modulation space with parameters p, q and weight function ω. We prove that if p1 = p2, q1 = q2, ω1 = ω0ω and ω2 = ω0, and ∂ a/ω0 ∈ L ∞ for all α, then the Ψdo at(x,D) : M p1,q1 (ω1) → M22 (ω2) is continuous. If instead a ∈ M p,q (ω) for appropriate p, q and ω, then we prove that the map here above is continuous, and if in addition pj = qj = 2, then we prove that at(x,D) is a Sc...

متن کامل

Necessary Conditions for Schatten Class Localization Operators

We study time-frequency localization operators of the form A12 a , where a is the symbol of the operator and φ1, φ2 are the analysis and synthesis windows, respectively. It is shown in [3] that a sufficient condition for A12 a ∈ Sp(L(R)), the Schatten class of order p, is that a belongs to the modulation space Mp,∞(R2d) and the window functions to the modulation space M1. Here we prove a partia...

متن کامل

Schatten Class Membership of Hankel Operators on the Unit Sphere

Let H(S) be the Hardy space on the unit sphere S in C, n ≥ 2. Consider the Hankel operator Hf = (1 − P )Mf |H(S), where the symbol function f is allowed to be arbitrary in L(S, dσ). We show that for p > 2n, Hf is in the Schatten class Cp if and only if f − Pf belongs to the Besov space Bp. To be more precise, the “if” part of this statement is easy. The main result of the paper is the “only if ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2017

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2016.11.007